Lũy Thừa Với Số Mũ Tự Nhiên, Các Dạng Toán Về Luỹ Thừa Với Số Mũ Tự Nhiên

Tìm hiểu về lũy thừa với số mũ tự nhiên, các phép toán với lũy thừa với số mũ tự nhiên và các dạng toán vận dụng.

Bạn đang xem: Luỹ thừa với số mũ tự nhiên

MỤC LỤC

I. Thế nào là lũy thừa với số mũ tự nhiên? II. Các phép tính về luỹ thừa với số mũ tự nhiênIII. Các dạng toán về luỹ thừa với số mũ tự nhiên

Trong chương trình Toán lớp 6, các em sẽ được làm quen với một khái niệm hoàn toàn mới đó là lũy thừa với số mũ tự nhiên. Vì thế lũy thừa với số mũ tự nhiên là gì? Và nó được tính như thế nào? Bài viết này sẽ giúp các em tìm hiểu khái niệm lũy thừa với số mũ tự nhiên và các dạng toán liên quan.

I. Thế nào là lũy thừa của số mũ tự nhiên?

1. Khái niệm số mũ

Luỹ thừa thứ n của a, ký hiệu là an, là tích của n thừa số a:

Con số Một gọi điện căn cứ.

Con số Một gọi điện số chỉ mục.

Nói cách khác, lũy thừa là phép nhân nhiều thừa số bằng nhau.

Quy ước: a1 = một

2. Cách đọc số mũ

an đọc là “a mũ n” hoặc “a mũ n” hoặc “lũy thừa n của a”.

Đặc biệt, a2 còn được gọi là “hình vuông” hoặc “hình vuông của a”.

a3 còn được gọi là “khối lập phương” hoặc “khối lập phương”.

3. Ví dụ về số mũ tự nhiên

Ví dụ 1. Viết các phép tính sau dưới dạng lũy ​​thừa, sau đó đọc các lũy thừa và đặt cơ số và số mũ của chúng:

a) 2.2.2

b) 7.7.7.7.7

c) 25.25.25.25

Giá:

a) 2.2.2 = 23

23 đọc là “hai mũ ba” hoặc “hai mũ ba” hoặc “lũy thừa ba của hai”. Cũng được đọc là “hai khối lập phương” hoặc “hai khối lập phương”.

Cơ sở là 2.

Số mũ là 3.

b) 7.7.7.7.7 = 75

75 đọc là “bảy mũ năm” hoặc “bảy mũ năm” hoặc “lũy thừa bảy mũ năm”.

Tham Khảo Thêm:  Bài Tập Lập Trình C /C++ Có Lời Giải Giành Cho Sv, Bài Tập C Có Lời Giải

Cơ sở là 7.

Số mũ là 5.

c) 25.25.25.25 = 254

254 đọc là “hai mươi lăm mũ bốn” hoặc “hai mươi lăm mũ bốn” hoặc “lũy thừa bốn của hai mươi lăm”.

Cơ sở là 25.

Số mũ là 4.

II. Các phép tính về lũy thừa với số mũ tự nhiên

1. Nhân hai lũy thừa cùng cơ số

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ:

Ví dụ 2. Viết kết quả của mỗi phép tính sau dưới dạng lũy ​​thừa:

a) 42,4

b) 155,152

c) 8. 2

d) 25 . 4. mười

Giá:

a) 42,4 = 42+1 = 43

b) 155,152 = 155+2 = 157

c) 8. 2 = 23. 2 = 23+1 = 24

d) 25 . 4. 10 = 100. 10 = 102,10 = 102+1 = 103

2. Chia hai lũy thừa cùng cơ số

Khi hai lũy thừa được chia cho cùng một cơ số (khác không), chúng ta giữ nguyên cơ số và trừ các số mũ:

vm : an = vm – n (a 0, mn)

Quy ước: a0 = 1 (a ≠ 0).

Ví dụ 3. Viết kết quả của mỗi phép tính sau dưới dạng lũy ​​thừa:

a) 46 : 43

b) 159 : 157

Giá:

a) 46 : 43 = 46-3 = 43

b) 159 : 157 = 159 – 7=152

III. Các dạng toán về luỹ thừa với số mũ tự nhiên

1. Dạng 1: Rút gọn biểu thức đã cho dưới dạng lũy ​​thừa

Phương pháp giải: Để rút gọn biểu thức dưới dạng lũy ​​thừa của một số tự nhiên, ta sử dụng các công thức sau:

(Đầu tiên)

(2) sáng= sáng+n

(3) am.an = am+n

Bài 1. Viết các tích đã cho dưới dạng lũy ​​thừa của một số tự nhiên:

a) 5.5.5

b) 5.5.25

c) 3.3.3.3.9

d) xxxxxx

TRẢ LỜI

a) 5.5.5=53

b) 5.5.25=5.5.52=51+1+2=54

c) 3.3.3.3.9=34.32=34+2=36

d) xxxxxx=x6

Bài 2. Viết kết quả của mỗi phép tính sau dưới dạng lũy ​​thừa:

a) 28,23

b) 9,27

c) 68:36

TRẢ LỜI

a) 28,23=28+3=211

b) 9,27=32,33=32+3=35

c) 68:36=68:62=68-2=66

2. Dạng 2: Viết một số dưới dạng bình phương hoặc lập phương của một số

Phương pháp giải:

Để bình phương một số, ta viết số đó dưới dạng tích của hai thừa số rồi đưa nó về dạng bậc hai.

Tham Khảo Thêm:  bài tập chứng minh lượng giác lớp 10 có đáp án

Để viết một số ở dạng lập phương, ta viết số đó dưới dạng tích ba thừa số giống nhau rồi đưa về lũy thừa bậc ba.

Xin lưu ý: Các số viết dưới dạng bình phương của một số tự nhiên được gọi là số vuông.

Ví dụ. Các số 0; đầu tiên; 4; 9; 16; … được gọi là số chính phương vì:

0 = 02; 1 = 11; 4 = 22; 9=32; 16 = 42.

Bài 1. Viết mỗi số sau dưới dạng bình phương của một số tự nhiên: 64; 81; 100; 121.

TRẢ LỜI

64 = 8.8=82

81=9,9=92

100=10,10=102

121=11,11=112

Bài 2. Viết mỗi tích sau dưới dạng bình phương của một số tự nhiên: 27; 64; 125; 216.

TRẢ LỜI

27=3.3.3=33

64=4.4.4=43

125=5.5.5=53

216=6.6.6=63

3. Dạng 3: Tính giá trị của biểu thức chứa lũy thừa

Phương pháp giải: Để tính giá trị của biểu thức chứa lũy thừa, ta sử dụng các công thức nhân hai lũy thừa cùng cơ số, chia hai lũy thừa cùng cơ số để rút gọn biểu thức rồi thực hiện phép tính.

Bài 1. Tính các lực sau và nhận xét về kết quả của các lực đó.

a) 102

b) 105

c) 106

TRẢ LỜI

a) 102 = 10,10=100

b) 105 = 10.10.10.10.10=100000

c) 106 = 10.10.10.10.10.10=1000000

Bình luận: Số mũ của lũy thừa cơ số 10 chính xác bằng số không trong kết quả. Cách tính nhanh lũy thừa 10:

Với n là số tự nhiên khác 0, ta có:

*

Bài 2. Tính giá trị của các biểu thức sau:

b) B = 5,42+32,5,2

c) C = 3.(52-42)

TRẢ LỜI

Một)

= 23-10

= 13

b)

B = 5,42+32,5,2

= 5,16+9,5,2

= 80+45,2

= 80+90

= 170

c)

C = 3.(52-42)

= 3.(25-16)

= 3,9

= 27

4. Dạng 4: So sánh hai biểu thức chứa lũy thừa

Phương pháp giải: Để so sánh hai lũy thừa, ta có thể làm như sau:

Cách 1. Trả về hai lũy thừa cùng cơ số và so sánh hai số mũ:

Nếu a > 1; m,n ∈ N*, m > n thì am > an .

Cách 2. Trả về hai lũy thừa có cùng số mũ và sau đó so sánh hai cơ số:

Tham Khảo Thêm:  Top 7 Điện Thoại Có Bút Cảm Ứng Tốt Nhất Hiện Nay, Điện Thoại Có Bút Cảm Ứng Giá Rẻ

Nếu a,b ∈ N; m N*, a > b thì am > bm

Đường 3. Tính giá trị của hai lũy thừa và so sánh kết quả.

Đường 4. Sử dụng tính chất bắc cầu:

Nếu a, b, c ∈ N; Một ; 7…… 75

b) 1212….. 1112

c) 102.10…..103

d) 23…..32

TRẢ LỜI

a) Vì 7 > 5 nên 77 > 75

b) Vì 11 12 12

c) Vì 102.10=102+1 =103 nên 102.10 = 103

d) Vì 23 = 8 và 32=9 và 8 3 2

5. Dạng 5: Viết số tự nhiên dưới dạng tổng các lũy thừa của 10

Phương pháp giải:

Trong chương trình Toán Tiểu học chúng ta đã biết một số có thể viết thành tổng theo từng hàng (hàng đơn vị, hàng chục, hàng trăm,…)

Ví dụ: 3252 = 3.1000 + 2.100 + 5.10 + 2.1

Ở dạng này ta sẽ thay các số 1, 10, 100, 1000, … bằng lũy ​​thừa của 10.

Ví dụ: 3252 = 3.103 + 2.102+ 5.101 +2.100

Bài tập. Viết các số: 523; 4325; , dưới dạng tổng các lũy thừa của 10.

TRẢ LỜI

523 = 5102+2101+3100

4325=4,103+3,102+2,101+5,100.

6. Dạng 6: Tìm cơ số hoặc số mũ của một phương trình

Phương pháp giải:

Bước 1. Trả về hai lũy thừa có cùng cơ số hoặc cùng số mũ.

Bước 2. Sử dụng thuộc tính:

Nếu am=an thì m=n (a∈ N*,a≠1; m,n ∈ N),

Nếu am=bn thì a = b (a, b, n ∈ N*).

Bài tập.

Xem thêm: Định Nghĩa & Ý Nghĩa Onboard, Phần Mềm Quản Lý Onboard Board

Tìm x, biết:

a) 2x=4

b) x3 = 125

c) 3x. 32 = 81

d) 4x+2: a2=16

TRẢ LỜI

Một)

2x=4

2x=22

x=2

b)

x3 = 125

x3=53

x=5

c)

3x. 32 = 81

3x+2=34

x+2=4

x=4-2

x=2

d) 4x+2 : 42=16

4x+2-2=42

4x=42

x=2

Lũy thừa với một số tự nhiên là một kiến ​​thức quan trọng. Hy vọng bài viết này sẽ giúp bạn hiểu thêmPhép toán lũy thừa với số mũ tự nhiên. Bằng cách đó, họ sẽ sử dụng nó để hoàn thành các bài tập ở lớp và ở nhà.

Related Posts

phiếu đánh giá và phân loại công chức năm 2016

[et_pb_section admin_label=”section”][et_pb_row admin_label=”row”][et_pb_column type=”2_3″][et_pb_text admin_label=”Văn bản” background_layout=”light” text_orientation=”center” use_border_color=”off” border_color=”# ffffff” border_style=”solid”] Việc đánh giá, phân loại cán bộ, công chức, viên chức năm nay sẽ được…

kế hoạch bồi dưỡng thường xuyên cá nhân năm học 2017-2018

Kế hoạch giáo dục thường xuyên cá nhân là mẫu kế hoạch hàng năm, được lập vào đầu mỗi năm học. Bước sang năm học mới, Hoatieu.vn…

tiểu luận đường lối kháng chiến chống thực dân pháp

Qua bài viết dưới đây, ACC sẽ cung cấp một số ý chính cần có trong bài văn lịch sử đảng bộ kháng chiến chống Pháp. 1….

tiểu luận công nghiệp hóa hiện đại hóa gắn với phát triển kinh tế tri thức

Mục lục LỜI NÓI ĐẦU (Tiểu luận: Công nghiệp hóa – Hiện đại hóa ở Việt Nam) CHƯƠNG 1: THÔNG TIN KHÁCH QUAN CỦA QUÁ TRÌNH CÔNG…

bài tập kiểm toán báo cáo tài chính có lời giải

Kiểm toán báo cáo tài chính đóng vai trò quan trọng trong quá trình hoạt động và phát triển của doanh nghiệp. Vậy cụ thể kiểm toán…

sáng kiến kinh nghiệm lớp 1 môn tiếng việt violet

Sáng kiến ​​kinh nghiệm lớp 5 môn chính tả màu tím: Một số biện pháp giúp học sinh viết đúng chính tả môn Chính tả lớp 5…

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *